5  Workflow: code style

##Solutions

5.1 Exercises 7.6

1.Restyle the following pipelines following the guidelines above.

library(tidyverse)
── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──
✔ ggplot2 3.4.0     ✔ purrr   1.0.1
✔ tibble  3.1.8     ✔ dplyr   1.1.0
✔ tidyr   1.3.0     ✔ stringr 1.5.0
✔ readr   2.1.3     ✔ forcats 1.0.0
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
library(nycflights13)

flights|>filter(dest=="IAH")|>group_by(year,month,day)|>summarize(n=n(),delay=mean(arr_delay,na.rm=TRUE))|>filter(n>10)
`summarise()` has grouped output by 'year', 'month'. You can override using the
`.groups` argument.
# A tibble: 365 × 5
# Groups:   year, month [12]
    year month   day     n delay
   <int> <int> <int> <int> <dbl>
 1  2013     1     1    20 17.8 
 2  2013     1     2    20  7   
 3  2013     1     3    19 18.3 
 4  2013     1     4    20 -3.2 
 5  2013     1     5    13 20.2 
 6  2013     1     6    18  9.28
 7  2013     1     7    19 -7.74
 8  2013     1     8    19  7.79
 9  2013     1     9    19 18.1 
10  2013     1    10    19  6.68
# … with 355 more rows
flights|>filter(carrier=="UA",dest%in%c("IAH","HOU"),sched_dep_time>0900,sched_arr_time<2000)|>group_by(flight)|>summarize(delay=mean(arr_delay,na.rm=TRUE),cancelled=sum(is.na(arr_delay)),n=n())|>filter(n>10)
# A tibble: 74 × 4
   flight delay cancelled     n
    <int> <dbl>     <int> <int>
 1     53 12.5          2    18
 2    112 14.1          0    14
 3    205 -1.71         0    14
 4    235 -5.36         0    14
 5    255 -9.47         0    15
 6    268 38.6          1    15
 7    292  6.57         0    21
 8    318 10.7          1    20
 9    337 20.1          2    21
10    370 17.5          0    11
# … with 64 more rows
flights |>
  
  filter(dest == "IAH") |>
  group_by(year, month, day) |> 
  summarize(n = n(), delay = mean(arr_delay, na.rm = TRUE)) |>
  filter(n > 10)
`summarise()` has grouped output by 'year', 'month'. You can override using the
`.groups` argument.
# A tibble: 365 × 5
# Groups:   year, month [12]
    year month   day     n delay
   <int> <int> <int> <int> <dbl>
 1  2013     1     1    20 17.8 
 2  2013     1     2    20  7   
 3  2013     1     3    19 18.3 
 4  2013     1     4    20 -3.2 
 5  2013     1     5    13 20.2 
 6  2013     1     6    18  9.28
 7  2013     1     7    19 -7.74
 8  2013     1     8    19  7.79
 9  2013     1     9    19 18.1 
10  2013     1    10    19  6.68
# … with 355 more rows